Bounding the k-rainbow total domination number
نویسندگان
چکیده
منابع مشابه
Total $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملbounding the rainbow domination number of a tree in terms of its annihilation number
a {em 2-rainbow dominating function} (2rdf) of a graph $g$ is a function $f$ from the vertex set $v(g)$ to the set of all subsets of the set ${1,2}$ such that for any vertex $vin v(g)$ with $f(v)=emptyset$ the condition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled, where $n(v)$ is the open neighborhood of $v$. the {em weight} of a 2rdf $f$ is the value $omega(f)=sum_{vin v}|f (v)|$. the {em $2$-r...
متن کاملBounding the Rainbow Domination Number of a Tree in Terms of Its Annihilation Number
A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ω(f) = ∑ v∈V |f(v)|. The 2-rainbow domination number of a graph G, denoted by γr2...
متن کاملOn the total $(k, r)$-domination number of random graphs
A subset S of a vertex set of a graphG is a total (k, r)-dominating set if every vertex u ∈ V (G) is within distance k of at least r vertices in S. The minimum cardinality among all total (k, r)-dominating sets ofG is called the total (k, r)domination number of G, denoted by γ (k,r)(G). We previously gave an upper bound on γ t (2,r)(G(n, p)) in random graphs with non-fixed p ∈ (0, 1). In this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: 0012-365X
DOI: 10.1016/j.disc.2021.112425